Impact of albumin assays in the diagnosis of malnutrition in hemodialysis patients: a cohort study

Lila Rami Arab, MD PhD, Sandrine Dabernat, PhD, Boutin Julian, MD PhD, Chloé Bordenave, MD, Karmani Malek, PharmD, Brigitte Colombiès, MD, Yahnou Delmas, MD, Renaud De-La-Faille, MD, Valérie De Précigout, MD, Sébastien Rubin, MD, Karine Moreau, MD, Marie-Lise Bats, PharmD PhD

PII: S1051-2276(22)00188-1
DOI: https://doi.org/10.1053/j.jrn.2022.10.001
Reference: YJREN 51896

To appear in: Journal of Renal Nutrition

Received Date: 24 June 2022
Revised Date: 26 September 2022
Accepted Date: 9 October 2022

This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

© 2022 Published by Elsevier Inc. on behalf of the National Kidney Foundation, Inc.
Impact of albumin assays in the diagnosis of malnutrition in hemodialysis patients: a cohort study

Lila Rami Arab MD PhD¹, Sandrine Dabernat PhD¹,², Julian Boutin MD PhD¹,², Chloé Bordenave MD¹, Malek Karmani PharmD¹, Brigitte Colombiès MD¹, Yahsou Delmas MD³, Renaud De-La-Faille MD³, Valérie De Précigout MD³, Sébastien Rubin MD³,⁴, Karine Moreau MD³ and Marie-Lise Bats PharmD PhD¹,⁴

¹ CHU Bordeaux, Department of Biochemistry, Pellegrin hospital, Bordeaux, France
² Univ. Bordeaux, INSERM, Bordeaux Institute of Oncology BRIC U1312, Bordeaux, France
³ CHU Bordeaux, Department of Nephrology, Transplantation, Dialysis, and Apheresis, Pellegrin Hospital, Bordeaux, France
⁴ Univ. Bordeaux, INSERM, Biology of Cardiovascular Diseases, U1034, Pessac, France.

Corresponding author: Doctor Marie-Lise Bats

CHU de Bordeaux, Department of Biochemistry, Pellegrin hospital, place Amélie Raba Léon, 33076 Bordeaux Cedex, France- e-mail: marie-lise.bats@chu-bordeaux.fr-Phone: +33 557821514

Word counts: 212 for the abstract; 1215 for the body of the manuscript

Short title: Method-specific cut-offs for hypoalbuminemia

Support and financial disclosure

No funding sources to declare. No competing financial interests to declare. All authors declare no conflict of interest.
Abstract

Impact of albumin assays in the diagnosis of malnutrition in hemodialysis patients: a cohort study

Objective: In hemodialysis (HD) patients, malnutrition should be diagnosed by several assessment tools including a plasma albumin concentration of less than 3.8 g/dL or 3.5 g/dL using bromocresol green (BCG) or immunonephelometry (IN), respectively. However, albumin measurement is not yet standardized, and two alternative methods are also commonly used in laboratories: bromocresol purple (BCP) and immunoturbidimetry (IT). This study aimed to revisit the hypoalbuminemia thresholds for BCP and IT, in HD patients. Methods: Plasma albumin was measured by the four analytical methods during the monthly hemodialysis nutritional assessment of 103 prospectively included patients. Results: Significant differences in albumin levels were observed in HD patients depending on the method used. Using BCP or IT with the cut-off at 3.5 g/dL (determined for the general population), we obtained 33% and 9.7% of false hypoalbuminemia in comparison to IN (mean bias of -0.4 g/dL and -0.065 g/dL, respectively). The best hypoalbuminemia threshold for BCP was 3.05 g/dL and 3.4 g/dL for IT. Twenty percent of HD patients were classified as malnourished when albumin was determined by IN. Similar rates were obtained using the new hypoalbuminemia cut-offs for BCP (18.5%) and IT (19.5%). Conclusion: To avoid nutritional misclassification of HD patients, we should adjust hypoalbuminemia thresholds when BCP or IT methods are used in laboratories.

Keywords: Albumin, analytical method, cut-off, hemodialysis, malnutrition.

Introduction

In HD patients, hypoalbuminemia is the key biological parameter for the diagnosis of Protein-Energy Wasting (PEW)\(^1\) or malnutrition\(^2\), in combination with clinical criteria. It is currently recommended to measure plasma albumin by either the BCG or IN method. However,
significant differences due to analytical interferences have been described between these two assays3-5, leading international guidelines to propose different decision thresholds for HD patients (albumin \textless 3.8 g/dL with BCG or \textless 3.5 g/dL with IN)1,2. Standardization of albumin measurement is even more complex as two alternative methods (ie. BCP or IT), are also widely implemented in laboratories. Decision thresholds for BCP and IT are already approved for the general population, but not for HD patients. This raises a serious question because negative analytical interferences are majored in HD patients due to albumin carbamylation and uremia 6. Discrepancies between analytical methods are known, however, the most recent guidelines for nutritional care in chronic kidney disease (CKD) patients do not specify which one should be used7. In our study, we determined the analytical biases of the four methods for albumin measurement in 103 chronic HD patients and proposed new decision thresholds for hypoalbuminemia depending on the used method. This work highlights that the appropriate decision threshold for hypoalbuminemia can significantly improve the diagnosis of malnutrition in HD patients.

Materials and methods

Study population and outcome. This observational monocentric prospective study, including in- and out- chronic HD patients, adheres to the STARD (Standard for reporting diagnostic accuracy studies)8 and follows the guidelines outlined in the Declaration of Helsinki and the Declaration of Istanbul, with a favorable opinion from the Research Ethics Committee. Participants aged more than 18 years old (n=103) were enrolled if they received hemodialysis for at least 3 months. According to the routine monthly nutritional assessment, blood was collected at the beginning of the middle week dialysis session. Demographic, clinical, and biological data were collected in dedicated health records DxCare® (Table 1). According to French HAS guidelines2, the malnutrition status was defined as a BMI <23 kg/m2 (calculated using a dry weight at the end of the dialysis session) associated with hypoalbuminemia.
(defined as <3.5 g/dL using IN, the reference assay). **Plasma albumin assays.** The four albumin measurements were performed on the same day by the BCP and BCG methods (Abbott Diagnostics), the IT method (DiAgam), and the IN test (Siemens Healthineers).

Statistical analysis. All analyses were performed using GraphPad Prism 5.0, as stated in the figures’ legends. Differences were considered statistically significant if the double-sided p-value was <0.05.

Results

Baseline characteristics of the population. Patients, mostly with diabetic or vascular nephropathies, were included (n=103) during their routine HD treatment. Hemodialysis was used in the majority of cases (69.9%). Malnourished patients represented 20.4% of the population, with lower BMI (-6 kg/m²), lower albumin levels (-0.3g/dL) and similar inflammatory status (i.e. CRP level) compared to normal-nourished patients (Table 1).

Bias in albumin concentrations. Albumin levels in HD patients were analyzed using BCP, BCG, and IT, and compared to the gold-standard IN. As expected, albumin levels were significantly overestimated by BCG (+0.24 g/dL) and underestimated by BCP (-0.43 g/dL). By contrast, IT and IN were highly correlated with a mean difference of -0.07 g/dL (Fig. 1).

Hypoalbuminemia classification. Despite a good linear association between IN and BCP (Figure 2A, ρ=0.96), 33% of HD patients classified as normoalbuminemic with IN, were misclassified as hypoalbuminemic using BCP with a cut-off at 3.5 g/dL (Fig. 2A, hatched area). Fewer discrepancies were observed between IT and IN at the recommended threshold of 3.5 g/dL, with only 9.7 % of false hypoalbuminemia (Fig. 2B, hatched area).

New hypoalbuminemia cut-offs for BCP and IT. Using AUROC curves (area under the receiver operating characteristic), we determined a new decision threshold for BCP to 3.05 g/dL (sensitivity 0.936, specificity 0.900, PPV 0.936, NPV 0.900, and accuracy 0.922, Fig.
For IT, the optimal threshold was 3.4 g/dL (sensitivity 0.936, specificity 0.875, PPV 0.922, NPV 0.897, accuracy 0.910, Fig. 3C-D).

Hypoalbuminemia thresholds and malnutrition. Malnutrition was defined as the combination of a BMI <23 kg/m² and hypoalbuminemia. IN and IT at the cut-off of 3.5 g/dL, displayed an identical population of 20.4% of malnourished patients (n=21/103) (Fig. 4A-B). This proportion increased by 4.8 % when hypoalbuminemia was determined by BCG at the cut-off of 3.8 g/dL, (n=26/103, Fig. 4C). Finally, the malnutrition rate was 30.1% (n=31/103) when BCP was used with the recommended cut-off of hypoalbuminemia at 3.5 g/dL (Fig. 4D). By applying the new decision thresholds for IT and BCP (3.4 g/dL and 3.05 g/dL respectively), the proportions of malnourished patients dropped to 19.5% (n=20/103) for IT, and 18.5%, (n=19/103) for BCP (Fig. 4E-F, respectively).

Discussion

Plasma albumin monitoring is essential for nutritional assessment and therapeutic decisions in HD patients. Our work highlights the high complexity in interpreting albumin measurements as analytical assays are not currently standardized. BCG overestimates albumin⁶⁻⁹, while IT and especially BCP measure lower albumin levels than the reference IN, as previously reported in the general population¹⁰ or HD patients⁶. Immunoassays are currently listed as the reference methods for albumin determination¹¹. Furthermore, HAS’ latest guidelines for the diagnosis and severity stratification of malnutrition in the general population recommend albumin measure by IT or IN but no longer by BCG which overestimates the concentration of albumin due to its interaction with alpha-1 and alpha-2 globulins¹²⁻¹⁴. However, analytical interferences with immunoassays are also described. Albumin carbamylation, an unavoidable consequence of excess urea in CKD, negatively interferes with IT¹⁵. This may explain why the best hypoalbuminemia threshold with IT in the HD population was not 3.5 g/dL, but 3.4 g/dL. The albumin binding sites for BCP contain a lysine moiety susceptible to
carbamylation, which may prevent BCP binding. In HD patients, this albumin modification lowered concentrations up to -0.6 g/dL16, in agreement with our observations. To circumvent difficulties of interpretation when albumin is determined by BCP in HD patients, we propose here to set the critical cut-off to 3.05 g/dL. Based on an analysis of 24778 albumin concentrations determined by either BCP or BCG, Coley and Grant suggested lowering the reference range of 3.5-5.0 g/dL to 3.1-4.5 g/dL. This adjustment resulted in comparable levels of hypoalbuminemia18. Interestingly, the lower limit proposed in this study is very close to the decision threshold we found for BCP. Using the new threshold at 3.05 g/dL, the rate of malnutrition is significantly reduced and comparable to that observed with IN. Concerning IT, since lowering the threshold by 0.1 g/dL does not improve the clinical classification of malnourished HD patients, we propose to maintain it at 3.5 g/dL. Although our results are crucial in routine nutritional HD management, there are some limitations. First, our study could be confirmed in an external and larger cohort of HD patients. Then, since albumin may be impacted by non-nutritional factors19, plasma albumin should be used in combination with other measures to assign malnutrition in patients with end-stage kidney disease.

Practical Application

This study aims to sensitize nephrologists and medical biologists to the analytical differences between colorimetric and immunological methods of albumin determination. The classification of malnourished patients should be improved by applying the appropriate hypoalbuminemia thresholds, adapted to the analytical method. This work could also be used as a reference for the establishment of guidelines for the nutritional management of HD patients.
REFERENCES

Figure legends

Figure 1. Box-and-whiskers plots representation of albumin concentrations in 103 hemodialyzed patients, measured by BCP (red box), BCG (green box) and IT (blue box) compared to IN method (black box). One-way ANOVA and Bonferroni’s multiple comparison tests were used for comparing all 4 methods. BCG, bromocresol green; BCP, bromocresol purple; IN, immunonephelometry; IT, immunoturbidimetry; ns, non-significant; **,** p<0.001; §, reference method.

Figure 2. Pearson’s correlation and linear regression analysis of the relationship between albumin levels in HDP by BCP and IN (A, red plots), and by IT and IN (B, blue plots). The dashed lines drawn at 3.5 g/dL represent the current recommended hypoalbuminemia threshold for IN, the reference method (at the intersection with the x-axis), and for BCP and IT (at the intersection with the y-axis, A and B respectively). The hatched areas represent the false-positive hypoalbuminemia corresponding to albumin values classified as hypoalbuminemia according to BCP (A) or IT (B) threshold but considered as normal plasma albumin using IN thresholds. For each comparison, linear equation, R-squared and Pearson coefficient are mentioned. BCP, bromocresol purple; IN, immunonephelometry; IT, immunoturbidimetry; FP, false positive; §, reference method.

Figure 3. Receiver operating characteristic (ROC) curves and confusion matrix and performance for BCP (A and B) and IT (C and D) in determining hypoalbuminemia, considering IN as the reference method in hemodialyzed patients. Receiver operating characteristic (ROC) analyses were built and the best cut-off values of hypoalbuminemia were determined for each method by calculating the Youden index. The Areas Under Receiver Operating Characteristic curves (AUROC) are indicated on the graph legend. In the confusion matrix (B and D), grey squares correspond to true positive and negative values and spotted grey squares represent false positive and negative values. Predictions were calculated for a
cut-off of hypoalbuminemia at 3.05 g/dL and 3.4 g/dL for BCP and IT, respectively. For each statistic, the 95% confidence intervals are indicated between brackets. BCP, Bromocresol Purple; IN, Immunonephelometry; IT, immunoturbidimetry; HD, hemodialysis; NPV, Negative Predictive Value; PPV, Positive Predictive Value.

Figure 4. Schematic representation of malnourished patients in HD cohort (%) when albumin is measured by IN (yellow icons, A), BCG (green icons, B) and BCP (red icons, C) with the current recommended cut-offs for hypoalbuminemia (3.8 g/dL for BCG, 3.5 g/dL for IN and BCP). The same representation is applied when hypoalbuminemia is determined by IT and BCP, using the new proposed cut-offs: 3.4 g/dL for IT (blue icons, D) and 3.05 g/dL for BCP (red icons, E). BCG, Bromocresol Green; BCP, Bromocresol Purple; IN, Immunonephelometry; IT, immunoturbidimetry.
Table 1. Baseline characteristics of hemodialysis patients

<table>
<thead>
<tr>
<th>Variable</th>
<th>Hemodialysis patients</th>
<th>Non-malnourished (n=82 (79.6%))</th>
<th>Malnourished (n=21 (20.4%))</th>
<th>p value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographic</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age (years), median (IQR)</td>
<td>68 (52-79)</td>
<td>68.5 (54-79)</td>
<td>64 (36.5-80.5)</td>
<td>0.3464</td>
</tr>
<tr>
<td>Male sex, n (%)</td>
<td>61 (59.2)</td>
<td>51 (62.2)</td>
<td>10 (47.6)</td>
<td>0.2252</td>
</tr>
<tr>
<td>Kidney disease etiology</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Diabetic nephropathy, n (%)</td>
<td>24 (22.8)</td>
<td>20 (23.8)</td>
<td>4 (19)</td>
<td>0.6053</td>
</tr>
<tr>
<td>Vascular and hypertensive nephropathy, n (%)</td>
<td>32 (31.1)</td>
<td>26 (31.7)</td>
<td>6 (28.5)</td>
<td>0.7817</td>
</tr>
<tr>
<td>Glomerular nephropathy, n (%)</td>
<td>20 (19.4)</td>
<td>14 (17.1)</td>
<td>6 (28.5)</td>
<td>0.2346</td>
</tr>
<tr>
<td>Hereditary nephropathy, n (%)</td>
<td>5 (4.8)</td>
<td>3 (3.5)</td>
<td>2 (9.5)</td>
<td>0.2645</td>
</tr>
<tr>
<td>Other, n (%)</td>
<td>9 (8.6)</td>
<td>8 (9.5)</td>
<td>1 (4.7)</td>
<td>0.4696</td>
</tr>
<tr>
<td>Undetermined nephropathy, n (%)</td>
<td>13 (12.4)</td>
<td>11 (13.1)</td>
<td>2 (9.5)</td>
<td>0.6319</td>
</tr>
<tr>
<td>Modality for acute renal replacement therapy</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hemodialysis, n (%)</td>
<td>72 (69.9%)</td>
<td>59 (72%)</td>
<td>13 (62%)</td>
<td>0.3705</td>
</tr>
<tr>
<td>Hemodiafiltration, n (%)</td>
<td>31 (30.1%)</td>
<td>23 (28%)</td>
<td>8 (38%)</td>
<td>0.3705</td>
</tr>
<tr>
<td>Nutritional status</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anthropometric measurements</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BMI (kg/m²), mean (SD) *</td>
<td>25.1 (5)</td>
<td>26.3 (4.8)</td>
<td>20.3 (2.1)</td>
<td><0.0001</td>
</tr>
<tr>
<td>Significant weight loss †, n (%)</td>
<td>13 (12.6%)</td>
<td>10 (12.2%)</td>
<td>3 (14.3%)</td>
<td>0.7969</td>
</tr>
<tr>
<td>Biological data</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Albumin (g/dL), mean (SD) *</td>
<td>3.31 (0.45)</td>
<td>3.38 (0.45)</td>
<td>3.02 (0.36)</td>
<td>0.0006</td>
</tr>
<tr>
<td>CRP (mg/dL), mean (SD)</td>
<td>1.92 (2.91)</td>
<td>1.95 (3.04)</td>
<td>1.68 (2.18)</td>
<td>0.9936</td>
</tr>
</tbody>
</table>

* Malnutrition was defined as BMI < 23 Kg/m² associated with albumin concentration < 3.5g/dL measured by IN method (13).
† Unintentional weight loss > 10% of the normal body weight over 6 months

Continuous variables were expressed as median (25th, 75th percentile) or mean +/- SD and discrete variables as absolute (relative) frequencies of patients. To compare the differences between malnourished and non-malnourished HD patients, we used the Wilcoxon-Mann-Whitney U test for quantitative variables and the Chi-squared test for categorical variables. Age, gender, etiology of kidney disease and therapy modality are independent of the nutritional status of HD patients.
Figure A

The scatter plot shows the relationship between Albumin concentration using BCP assay (g/dL) and Albumin concentration using IN assay $^\$ (g/dL). The equation of the line is $y = 0.8413x + 1.216$ with $r^2 = 0.9144$ and $\rho = 0.9563 (p<0.0001)$. The FP is 33%.

Figure B

The scatter plot shows the relationship between Albumin concentration using IT assay (g/dL) and Albumin concentration using IN assay $^\$ (g/dL). The equation of the line is $y = 0.9637x + 0.5486$ with $r^2 = 0.9320$ and $\rho = 0.9654 (p<0.0001)$. The FP is 9.7%.
A

20.4%
IN, recommended
cut-off 3.5 g/dL

B

20.4%
IT, recommended
cut-off 3.5 g/dL

C

25.2%
BCG, recommended
cut-off 3.8 g/dL

D

30.1%
BCP, recommended
cut-off 3.5 g/dL

E

19.5%
IT, new proposed
cut-off 3.4 g/dL

F

18.5%
BCP, new proposed
cut-off 3.05 g/dL